Abstract

An anisotropic rotationally inhomogeneous wedge bent by either a concentrated couple applied at the tip (Carothers problem) or uniform surface loadings (Levy problem) is considered. The existence criteria for homogeneous solutions describing stresses and strains in both problems are established. In the Levy problem there are two types of critical wedge angles, at which homogeneous solutions break down and become infinite. The first type critical wedge angles of Levy’s problem are shown to be critical also for Carothers’problem whatever the rotational inhomogeneity. Particular solutions to both problems are obtained at the critical wedge angle. The form of these solutions is established to depend on two factors: the multiplicity degree of roots of some eigenvalue equation and the number of independent eigenvectors of some real matrix. It is shown also that the eigenvalue equation does not provide an alternative way to calculate the critical angles and in the first-order perturbation theory results in just the same equations for the critical angles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.