Abstract

The preTCR is associated with signal-transducing CD3gamma, delta, epsilon, and zeta polypeptides. It is generally agreed that CD3 chains play redundant roles in the receptor-mediated signal transduction. In the present study, we show that the intracytoplasmic (IC) domain of CD3epsilon is essential for early thymocyte maturation. We demonstrate that the IC domain-deleted CD3epsilon fails to restore the double negative (DN) to double positive (DP) thymocyte development in CD3epsilon-deficient mice. Additional experiments show that the membrane proximal basic amino acid rich sequence in the IC domain of CD3epsilon is sufficient for the DN to DP differentiation, whereas the proline rich sequence is required for efficient proliferation. This is probably due to impaired ligand independent recruitment of Nck to the proline rich sequence motif of CD3epsilon within the context of the preTCR. The data presented in this study elucidates mechanistic basis for the preTCR-induced proliferation of the DN thymocytes and have identified distinct roles for individual motifs of CD3epsilon in the preTCR-mediated differentiation and proliferation. These data provide the first genetic and phenotypic evidence for requirement of the IC domain of a CD3 chain in thymocyte development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.