Abstract
Abstract Battery polarisation is not only responsible for reducing battery available capacity but also for controlling heat generation characteristics of batteries. This phenomenon was therefore carefully studied and modelled by Newman, Tiedemann and Gu (NTG). The NTG model is now widely used for simulating battery thermal behaviour and has even been adopted by CD-adapco for their proprietary battery modelling software - Battery Design Studio. The model however revolves around an idealised battery cell. It may thus not be applicable to commercial battery cells. This paper scrutinises the effect of open circuit voltage (OCV), a key parameter in the NTG model, on the irreversible heat generation of a commercial cell under a controlled environment by differentiating the OCV recorded immediately after the current stops flowing through the cell and the OCV corresponding to the equilibrium state of the cell. It is noticed that the NTG model underestimates the irreversible heat generation rates for a 20 Ah Li-ion pouch cell by approximately 0.15 W and 0.22 W for discharge currents at 0.33C and 0.5C at an operating temperature of 27 °C, respectively. It is also observed that the accuracy of the NTG model is significantly improved in simulating thermal behaviour of commercial battery cells when the OCV is representative of the cell equilibrium voltage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.