Abstract
Recently, several experimental and theoretical studies have demonstrated the feasibility of enhancing the sonochemical production of hydrogen via methanol pyrolysis within acoustic cavitation bubbles(i.e. sonolysis of aqueous methanol solution). This review includes both the experimental and theoretical achievements in the field of hydrogen production by methanol sonolysis. Additionally, the limits of the process's applicability and plausible solutions are highlighted. The impact of different parameters influencing the process performance is discussed. Finally, the effects of methanol concentration on the size distribution of active cavitationbubbles are analyzed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.