Abstract

Radar wave absorbers are important for the reduction of radar cross section of the target for stealth applications. Earlier the radars were available in the frequency range 8–12 GHz (X-band) and 12–18 GHz (Ku-Band). Due to recent advancement in radar technology, radars are now available from 2 to 18 GHz frequency range. So there is an urgent need to develop such a material that can work as radar wave absorber in the lower frequency band of the microwave spectrum i.e., 2–8 GHz. For this purpose the selection of material is an important criterion as the radar wave absorption depends primarily upon the material characteristics i.e., complex permittivity and complex permeability. For lower frequency radar wave absorption, the material must also possess the conducting property along with dielectric and magnetic properties. Therefore, an attempt has been made to develop a radar wave absorbing nano-composite material by selecting constituent materials with such inherent properties that can work for the absorption of radar wave in the lower frequency range. It is observed that the developed composite give good absorption in the lower frequency range but with narrow radar wave absorption bandwidth (4–7 GHz). So we have explored the possibility of the efficient use of an advanced electromagnetic technique like frequency selective surface to enhance the radar wave absorption bandwidth in the lower frequency region of the microwave frequency spectrum and precaution has been taken such that complexity due to FSS can be avoided. It has been observed that the synthesised single layer absorber with single square loop, cross dipole and Jerusalem cross FSSs provides radar wave absorption bandwidth in the frequency range 2–8 GHz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call