Abstract
Over the past few years, great attention has been given to nonaqueous lithium-air batteries owing to their ultrahigh theoretical energy density when compared with other energy storage systems. Most of the research interest, however, is dedicated to batteries operating in pure or dry oxygen atmospheres, while Li-air batteries that operate in ambient air still face big challenges. The biggest challenges are H2 O and CO2 that exist in ambient air, which can not only form byproducts with discharge products (Li2 O2 ), but also react with the electrolyte and the Li anode. To this end, recent progress in understanding the chemical and electrochemical reactions of Li-air batteries in ambient air is critical for the development and application of true Li-air batteries. Oxygen-selective membranes, multifunctional catalysts, and electrolyte alternatives for ambient air operational Li-air batteries are presented and discussed comprehensively. In addition, separator modification and Li anode protection are covered. Furthermore, the challenges and directions for the future development of Li-air batteries are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.