Abstract

The adsorption and dynamics of a polymer chain on a stripe-patterned surface composed of periodical attractive and neutral stripes are studied by using Monte Carlo simulation. The critical adsorption temperature Tc and pattern-recognition temperature Tr are estimated from the desorption probability, surface contact number, and bridge number. A phase diagram presenting three polymer states, including a desorbed state above Tc, a multi-stripe adsorbed state at an intermediate temperature Tr < T < Tc, and a single-stripe adsorbed state below Tr, is provided for infinitely long chains. Normal diffusion is always observed for a polymer in the direction parallel to the stripe even at low temperature. But in the direction perpendicular to the stripe, the polymer can freely diffuse above Tc, whereas the polymer is confined to one attractive stripe below Tr. However, the adsorbed polymer can hop from one attractive stripe to another at the intermediate temperature Tr < T < Tc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.