Abstract

We show that a focusing component Γ of the boundary of a billiard table is absolutely focusing iff a sequence of convergents of a continued fraction corresponding to any series of consecutive reflections off Γ is monotonic. That is, if Γ is absolutely focusing this implies monotonicity of curvatures of the wave fronts in the series of reflections off Γ and therefore explains why and how the absolutely focusing components may generate hyperbolicity of billiards.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.