Abstract
The anisotropic van der Waals material α-MoO3 has recently attracted considerable attention because of the ability to support ellipse and hyperbolic phonon polaritons with extreme field confinement and long lifetimes, which can be used in topological transition and transformation polaritonics. However, the dispersion theory of some phonon polaritons in complex heterojunctions often requires tedious computation, which makes it difficult to simply judge and analyze the physical process of the photonic topological transition. Here we obtain the equivalent permittivity distribution of two-dimensional (2D) heterostructures by the effective medium theory and analyze the rotation-induced topological transitions and stack-dependent topological transitions of phonon polaritons. Unlike the previous discussion, we can predict the topological transition points by a parameter ɛx/y(i.e., the permittivity ratio along the in-plane crystal axis of the equivalent medium) and design precisely the phonon polaritons in the stacked materials by controlling the equivalent permittivity after simple calculation. The feasibility of the effective medium theory is verified based on the 2D approximation model and the non-2D approximation model under the limit of an ultrathin slab. Meanwhile, we compare the field distributions and dispersions of the 2D heterostructures and the corresponding equivalent structure. The simulation suggests that the elliptic/hyperbolic responses of the stacked materials depend on the sign of ɛx/y. The new, to the best of our knowledge, method not only provides an easier and clearer criterion for the study of photonic topological transition in anisotropic polaritons, but also shows great potential in designing some multilayer 2D heterostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.