Abstract

Temperature and strain rate dependence on high temperature elongation to failure in fine-grained ceramics is phenomenologically explained from grain growth behavior during deformation and the superplastic flow behavior. The elongation to failure at temperatures between 1573 and 1773 K was analyzed for 2 mol% TiO2 and 2 mol% GeO2 co-doped tetragonal zirconia polycrystal (TZP), which exhibits excellent high temperature ductility. The improvement in the high temperature ductility in TZP is attributed to dopant cation segregation in the vicinity of the grain boundaries. The phenomenological analysis revealed that co-doping of Ti and Ge cations increases the grain size at the time of failure, as a parameter to describe a limit of an accommodation process for superplastic flow. The parameter of the critical grain size at the time of failure correlates well with the value of overlap population in cation-doped TZP model cluster obtained from a first-principle molecular orbital calculation. The covalent bond at the grain boundaries plays a critical role in the high temperature tensile ductility of TZP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.