Abstract

BackgroundThe availability of underexploited agricultural residues in Thailand opens up the opportunity to supply second-generation bioethanol production. The national implementation of residues-to-biofuel can potentially boost the bioeconomy and greenhouse gas mitigation but requires the involvement of multiple stakeholders in the development of effective policy recommendations. This study aims to optimize the implementation of the national strategy through the use of a multi-criteria approach that involves participatory prioritization by current stakeholders in order to evaluate certain aspects and important indicators for second-generation bioethanol development.MethodsThe Delphi-AHP technique was used to analyze the degree of importance of different criteria. The evaluation process was conducted with various stakeholders and used a pairwise comparison of 4 dimensions (main criteria) and 12 indicators (sub-criteria). Participants were asked to rate factors related to technical feasibility, environmental impacts, economic feasibility and social impacts in terms of importance.ResultsBioethanol stakeholders in Thailand from five different sectors (industry/business, NPO/NGOs, the governmental sector, academic/research institutes and financial institutions/banks) participated in the Delphi survey. The 20 experts’ evaluation of the four dimensions ranked economic feasibility (32.7%) highest in terms of level of importance, followed by environmental impacts (25.1%), technical feasibility (24.9%) and social impacts (17.3%). When assessing the sub-criteria, the participants selected ‘final price per liter’, ‘added value of input materials’ and ‘net energy balance’ as the top three most important indicators among the 12 sub-criteria. In terms of a link between the preferred criteria and the participants’ expertise, the results encouraged taking different backgrounds and affiliations into account in the policy planning phase.ConclusionsThe stakeholder survey indicated the importance of economic aspects, highlighting the need to take governmental driven policy into consideration. However, implementation scenarios have to be embedded in a broader range of aspects because all the dimensions were rated as being highly impactful. For future sustainable bioenergy, the inclusion of stakeholders’ opinions can result in multifaceted scenarios that can be linked to social acceptance and benefits for all relevant players when developing policy recommendations for advanced bioenergy.

Highlights

  • The availability of underexploited agricultural residues in Thailand opens up the opportunity to supply second-generation bioethanol production

  • A development plan for bioethanol in Thailand was initially promoted as a way to replace imported fossil fuels and to encourage agricultural crop production in the energy sector

  • In order to create a sustainable framework to meet the goal of bioethanol production and ensure longterm benefits for stakeholders, it has become more necessary to incorporate multi-disciplinary dimensions and criteria in the policymaking

Read more

Summary

Introduction

The availability of underexploited agricultural residues in Thailand opens up the opportunity to supply second-generation bioethanol production. The national implementation of residues-to-biofuel can potentially boost the bioeconomy and greenhouse gas mitigation but requires the involvement of multiple stakeholders in the development of effective policy recommendations. This study aims to optimize the implementation of the national strategy through the use of a multi-criteria approach that involves participatory prioritization by current stakeholders in order to evaluate certain aspects and important indicators for second-generation bioethanol development. Thailand’s greenhouse gas (GHG) reduction goal has prompted an urgent search for sustainable energy sources in its pursuit of effective GHG mitigation. The long-term promotion of bioethanol, supported by the Alternative Energy Development Plan (AEDP 2015), aims to produce 4136 million liters [3] by 2036, an increase of 157% over 2019 production volumes [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call