Abstract

The recent energy demands affected by the dilution of conventional energy resources and the growing awareness of environmental considerations, had positioned the research of renewable energy conversion methods in general and of thermoelectric direct conversion of thermal into electrical energies in particular, in the forefront of the currently active applicative sciences. IV-VI thermoelectric compounds (e.g. GeTe, PbTe and SnTe) and their alloys comprise some of the most efficient thermoelectric compositions ever reported. Yet a proper utilization of such materials in practical thermoelectric devices, still requires an overcoming the so-called technological “valley of death”, including among others, transport properties' degradation, due to sublimation of volatile Te rich species, while being subjected to elevated temperatures for long periods of time. In an attempt to establish practical operation criteria for extending the operation periods of such thermoelectric converters, it is currently shown based on thermal gravimetric and metallurgical considerations that such harmful sublimation can be practically bridged over by limiting the maximal operating temperatures to the 410–430°C range for GeTe rich alloys and to 510–530°C for PbTe and SnTe rich alloys, depending of the thermoelectric leg's diameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.