Abstract
Fault tree analysis (FTA) is a technique that describes the combinations of events in a system which result in an undesirable outcome. FTA is used as a tool to quantitatively assess a system's probability for an undesirable outcome. Time constraints from concept to production in modern engineering often limit the opportunity for a thorough statistical analysis of a system. Furthermore, when undesirable outcomes are considered such as hazard to human(s), it becomes difficult to identify strict statistical targets for what is acceptable. Consequently, when hazard to human(s) is concerned a common design target is to protect the system from single points of failure (SPOF) which means that no failure mode caused by a single event, concern, or error has a critical consequence on the system. Such a design target is common with “by-wire” systems. FTA can be used to verify if a system is protected from SPOF. In this paper, sufficient criteria for evaluating protection from SPOF for partially expanded fault trees are proposed along with proof. The proposed criteria consider potential interactions between the lowest drawn events of a partial fault tree expansion which otherwise easily leads to an overly optimistic analysis of protection from SPOF. The analysis is limited to fault trees that are coherent and static.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.