Abstract

Overall water splitting (OWS) using semiconductor photocatalysts is a promising method for solar fuel production. Achieving a high quantum efficiency is one of the most important prerequisites for photocatalysts to realize high solar-to-fuel efficiency. In a recent study (Nature 2020, 58, 411-414), a quantum efficiency of almost 100 % has been achieved in an aluminum-doped strontium titanate (SrTiO3 : Al) photocatalyst. Herein, using the SrTiO3 : Al as a model photocatalyst, we reveal the criteria for efficient photocatalytic water splitting by investigating the carrier dynamics through a comprehensive photoluminescence study. It is found that the Al doping suppresses the generation of Ti3+ recombination centers in SrTiO3 , the surface band bending facilitates charge separation, and the in situ photo-deposited Rh/Cr2 O3 and CoOOH co-catalysts render efficient charge extraction. By suppressing photocarrier recombination and establishing a facile charge separation and extraction mechanism, high quantum efficiency can be achieved even on photocatalysts with a very short (sub-ns) intrinsic photocarrier lifetime, challenging the belief that a long carrier lifetime is a fundamental requirement. Our findings could provide guidance on the design of OWS photocatalysts toward more efficient solar-to-fuel conversion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.