Abstract

Silica fume was thermally treated to 700–1100°C in air to transform it into crystals and cause it to reach the metastable cristobalite state. The phase transition behaviour of the silica fume crystallisation process and the main factors influencing the crystallisation behaviour were investigated via thermogravimetry differential thermal analysis, X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The results show that when the treatment temperature reaches 800°C, the silica fume undergoes a displacive phase transformation and begins to nucleate. At 1100°C, the silica fume fully converts to cristobalite. Alkali metal impurity compounds in the silica fume promote the phase transformation of silica fume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.