Abstract
The real $\varepsilon$-pseudospectrum of a real matrix $A$ consists of the eigenvalues of all real matrices that are $\varepsilon$-close in spectral norm to $A$. The closeness is commonly measured in spectral or Frobenius norm. The real pseudospectral $\varepsilon$-pseudospectral abscissa, which is the largest real part of these eigenvalues for a prescribed value $\varepsilon$, measures the structured robust stability of $A$ w.r.t. real perturbations. In this paper, we introduce a criss-cross type algorithm to compute the real pseudospectral $\varepsilon$-pseudospectral abscissa for the spectral norm. Our algorithm is based on a superset characterization of the real pseudospectrum where each criss and cross search involves solving linear eigenvalue problems and singular value optimization problems. The new algorithm is proved to be globally convergent, and observed to be locally linearly convergent. Moreover, we propose a subspace projection framework in which we combine the criss-cross algorithm with subspace projection techniques to solve large-scale problems. The subspace acceleration is proved to be locally superlinearly convergent. The robustness and efficiency of the proposed algorithms are demonstrated on numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: SIAM Journal on Matrix Analysis and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.