Abstract

In cyanobacteria, metabolic engineering using synthetic biology tools is limited to build a biosolar cell factory that converts CO2 to value-added chemicals, as repression of essential genes has not been achieved. In this study, we developed a dCas12a-mediated CRISPR interference system (CRISPRi-dCas12a) in cyanobacteria that effectively blocked the transcriptional initiation by means of a CRISPR-RNA (crRNA) and 19-nt direct repeat, resulting in 53-94% gene repression. The repression of multiple genes in a single crRNA array was also successfully achieved without a loss in repression strength. In addition, as a demonstration of the dCas12a-mediated CRISPRi for metabolic engineering, photosynthetic squalene production was improved by repressing the essential genes of either acnB encoding for aconitase or cpcB2 encoding for phycocyanin β-subunit in Synechococcus elongatus PCC 7942. The ability to regulate gene repression will promote the construction of biosolar cell factories to produce value-added chemicals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call