Abstract

Since lung cancer remains the leading cause of cancer death globally, there is an urgent demand for novel therapeutic targets. We carried out a CRISPR interference (CRISPRi) loss-of-function screen for human lung adenocarcinoma (LUAD) targeting 2098 deregulated genes using a customized algorithm to comprehensively probe the functionality of every resolvable transcriptional start site (TSS). CASP8AP2 was identified as the only hit that significantly affected the viability of all eight screened LUAD cell lines while the viability of non-transformed lung cells was only moderately impacted. Knockdown (KD) of CASP8AP2 induced both autophagy and apoptotic cell death pathways. Systematic expression profiling linked the AP-1 transcription factor to the CASP8AP2 KD-induced cancer cell death. Furthermore, inhibition of AP-1 reverted the CASP8AP2 silencing-induced phenotype. Overall, the tailored CRISPRi screen profiled the impact of over 2000 genes on the survival of eight LUAD cell lines and identified the CASP8AP2 – AP-1 axis mediating lung cancer viability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.