Abstract
Simple SummaryHomeotic genes encode transcription factors that coordinated the anatomical structure formation during the early embryonic development of organisms. In this study, we functionally characterized two homeotic genes, Abdominal-A (Abd-A) and Ultrabithorax (Ubx), in the Asian corn borer, Ostrinia furnacalis (a maize pest that has devastated the Asia-Pacific region) by using a CRISPR/Cas9 genome editing system. Our results show that the mutagenesis of OfAbd-A and OfUbx led to severe morphological defects in O. furnacalis, which included fused segments and segmental twist during the larval stage, and hollowed and incision-like segments during the pupal stage in OfAbd-A mutants, as well as defects in the wing-pad development in pupal and adult OfUbx mutants. Overall, knocking out Abd-A and Ubx in O. furnacalis resulted in the embryonic lethality to, and pleiotropic impact on, other homeotic genes. This study not only confirms the conserved body planning functions in OfAbd-A and OfUbx, but it also strengthens the control implications of these homeotic genes for lepidopteran pests.(1) Background: Abdominal-A (Abd-A) and Ultrabithorax (Ubx) are homeotic genes that determine the identity and morphology of the thorax and abdomen in insects. The Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Pyralidae), is a devastating maize pest throughout Asia, the Western Pacific, and Australia. Building on previous knowledge, we hypothesized that the knockout of Abd-A and Ubx would disrupt the abdominal body planning in O. furnacalis. (2) Methods: CRISPR/Cas9-targeted mutagenesis was employed to decipher the functions of these homeotic genes. (3) Results: Knockout insects demonstrated classical homeotic transformations. Specifically, the mutagenesis of OfAbd-A resulted in: (1) Fused segments and segmental twist during the larval stage; (2) Embryonic lethality; and (3) The pleiotropic upregulation of other homeotic genes, including Lab, Pd, Dfd, Antp, and Abd-B. The mutagenesis of OfUbx led to: (1) Severe defects in the wing pads, which limited the ability of the adults to fly and mate; (2) Female sterility; and (3) The pleiotropic upregulation of other homeotic genes, including Dfd, Abd-B, and Wnt1. (4) Conclusions: These combined results not only support our hypothesis, but they also strengthen the potential of using homeotic genes as molecular targets for the genetic control of this global insect pest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.