Abstract

Plant pathogens like virus, bacteria, and fungi incur a huge loss of global productivity. Targeting the dominant R gene resulted in the evolution of resistance in pathogens, which shifted plant pathologists’ attention toward host susceptibility factors (or S genes). Herein, the application of sequence-specific nucleases (SSNs) for targeted genome editing are gaining more importance, which utilize the use of meganucleases (MN), zinc finger nucleases (ZFNs), transcription activator-like effector-based nucleases (TALEN) with the latest one namely clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). The first generation of genome editing technologies, due to their cumbersome nature, is becoming obsolete. Owing to its simple and inexpensive nature the use of CRISPR/Cas9 system has revolutionized targeted genome editing technology. CRISPR/Cas9 system has been exploited for developing resistance against virus, bacteria, and fungi. For resistance to DNA viruses (mainly single-stranded DNA viruses), different parts of the viral genome have been targeted transiently and by the development of transgenic plants. For RNA viruses, mainly the host susceptibility factors and very recently the viral RNA genome itself have been targeted. Fungal and bacterial resistance has been achieved mainly by targeting the host susceptibility genes through the development of transgenics. In spite of these successes CRISPR/Cas9 system suffers from off-targeting. This and other problems associated with this system are being tackled by the continuous discovery/evolution of new variants. Finally, the regulatory standpoint regarding CRISPR/Cas9 will determine the fate of using this versatile tool in developing pathogen resistance in crop plants.

Highlights

  • Plants are continuously being exposed to various pathogens including bacteria, fungi and viruses resulting in 20–40% yield loss globally (Savary et al, 2012; Borrelli et al, 2018)

  • new breeding techniques (NBTs) include the usage of sequence-specific nucleases (SSNs) such as meganucleases (MNs), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindrome repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), which have revolutionized targeted modifications of genomes

  • Ortigosa et al (2018) identified ortholog of AtJAZ2 in tomato (SlJAZ2), and it was targeted by CRISPR/Cas9 to generate dominant JAZ2 repressor- SlJAZ2 jas which prevented COR induced stomatal opening and provided resistance to biotrophic microbe pv. tomato (Pto) DC3000

Read more

Summary

Frontiers in Plant Science

Targeting the dominant R gene resulted in the evolution of resistance in pathogens, which shifted plant pathologists’ attention toward host susceptibility factors (or S genes). Owing to its simple and inexpensive nature the use of CRISPR/Cas system has revolutionized targeted genome editing technology. For resistance to DNA viruses (mainly single-stranded DNA viruses), different parts of the viral genome have been targeted transiently and by the development of transgenic plants. For RNA viruses, mainly the host susceptibility factors and very recently the viral RNA genome itself have been targeted. Fungal and bacterial resistance has been achieved mainly by targeting the host susceptibility genes through the development of transgenics. In spite of these successes CRISPR/Cas system suffers from off-targeting.

INTRODUCTION
Viral resistance BSCTV
Malus domestica
FUTURE PERSPECTIVES
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call