Abstract

Reducing leaky gene expression is critical for improving protein yield of recombinant bacteria and stability of engineered cellular circuits in synthetic biology. Leaky gene expression occurs when a genetic promoter is not fully repressed, leading to unintended protein synthesis in the absence of stimuli. Existing work have devised specific molecular strategies for reducing leaky gene expression of each promoter. In contrast, we describe a repurposed, modular CRISPRi system that attenuates leaky gene expression using a series of single-guide RNAs targeting the PT7/LacO1 promoter. Furthermore, we demonstrate the efficacy of CRISPRi to significantly increase the dynamic range of T7 RNA Polymerase (T7RNAP) promoters. In addition, we demonstrate that the CRISPRi system can be applied to enhance growth of bacteria that suffer from leaky expression of a toxic protein. Our work establishes a new application of CRISPRi in genomic engineering to improve the control of recombinant gene expression. The approach is potentially generalizable to other gene expression system by changing the single-guide RNAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.