Abstract

Prostate cancer (PCa) is one of the most lethal causes of cancer-related death in male. It is characterized by chromosomal instability and disturbed signaling transduction. E3 ubiquitin ligases are well-recognized as mediators leading to genomic alterations and malignant phenotypes. There is a lack of systematic study on novel oncodrivers with genomic and clinical significance in PCa. In this study we used clustered regularly interspaced short palindromic repeats (CRISPR) system to screen 656 E3 ubiquitin ligases as oncodrivers or tumor repressors in PCa cells. We identified 51 significantly changed genes, and conducted genomic and clinical analysis on these genes. It was found that the Ring Finger Protein 19A (RNF19A) was a novel oncodriver in PCa. RNF19A was frequently amplified and highly expressed in PCa and other cancer types. Clinically, higher RNF19A expression correlated with advanced Gleason Score and predicted castration resistance. Mechanistically, transcriptomics, quantitative and ubiquitination proteomic analysis showed that RNF19A ubiquitylated Thyroid Hormone Receptor Interactor 13 (TRIP13) and was transcriptionally activated by androgen receptor (AR) and Hypoxia Inducible Factor 1 Subunit Alpha (HIF1A). This study uncovers the genomic and clinical significance of a oncodriver RNF19A in PCa. The results of this study indicate that targeting AR/HIF1A-RNF19A-TRIP13 signaling axis could be an alternative option for PCa diagnosis and therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call