Abstract

The development of an engineered RNA device capable of detecting multiple biomarkers to evaluate pathological states and autonomously implement responsive therapies is urgently needed. Here, we report InCasApt, an integrated nano CRISPR Cas13a/RNA aptamer theranostic platform capable of achieving both biomarker detection and biomarker-driven therapy. Within this system, a Cas13a/crRNA complex, a hairpin reporter (HR), a dinitroaniline caged Ce6 photosensitizer (Ce6-DN), and a DN-binding RNA aptamer precursor (DNBApt) are coloaded onto dendritic mesoporous silicon nanoparticles (DMSN) in a controlled manner. While InCasApt remains inert in normal cells, its programmable theranostic capabilities are activated in tumor cells that have elevated expression of carcinogenic miRNA-155 and miRNA-21. These miRNAs act as an AND logic gate, generating fluorescence for disease condition evaluation and ROS for photodynamic therapy. This process also upregulates antioncogene BRG1 and suppresses tumor migration by inhibiting the function of miRNA-155 and miRNA-21. These effects underscore the versatility of InCasApt as an miRNA-targeting strategy for bridging the gap between diagnosis and therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.