Abstract
Spinosyn insecticides (spinosad and spinetoram) have been widely used to control a number of agricultural pests including the fall armyworm, Spodoptera frugiperda. Mutations of the nicotinic acetylcholine receptor α6 subunit (nAChRα6) have been reported to confer high levels of resistance to spinosyns in several insect pests. Here we used CRISPR-mediated gene knockout to determine the involvement of S. frugiperda nAChRα6 (Sfα6) in spinosyns susceptibility. A Sfα6 knockout strain of S. frugiperda (Sfα6-KO) was established using dual single guide RNA (sgRNA) directed large fragment deletion with the CRISPR/Cas9 system. Sfα6-KO showed high levels of resistance to spinosad (307-fold) and spinetoram (517-fold) compared with the progenitor strain YJ-19, while no resistance was observed to emamectin benzoate, indoxacarb, chlorfenapyr, chlorantraniliprole and broflanilide. Genetic analyses confirmed that spinosad resistance in Sfα6-KO was autosomal, incompletely recessive and tightly linked to the edited deletion mutation of Sfα6. Our results provided in vivo functional evidence for Sfα6 as the major target of spinosyns against S. frugiperda, and demonstrated that disruption of Sfα6 causes high level resistance to spinosyns. Although no mutations of Sfα6 have yet been reported in any field populations of S. frugiperda, it is critical to develop F1 screens and/or DNA-based methods to detect and monitor the mutant allele frequencies of Sfα6 across global populations of S. frugiperda.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.