Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR) system provides a new molecular diagnostic tool for construction of biosensor platforms due to its high programmability and target specificity. Herein, we developed a CRISPR-empowered electrochemical biosensor by combining the advantages of CRISPR/Cas13a and primer exchange reaction (PER), named PER-E-CRISPR, for target amplification-free and sensitive detection of miR-21. Dual-signal amplification procedures involve the binding of target miR-21 induced by CRISPR-based amplification, along with the hybridization of multiple short single-stranded DNA strands with PER concatemers. When target miR-21 is present, CRISPR/Cas13a specifically recognizes the target miRNA, triggering the trans-cleavage activity of CRISPR/Cas13a. Then Cas13a/crRNA/miRNA cleaved the predesigned ribonucleotide site in hairpin 1 (HP1) and released trigger to open hairpin 2 (HP2) modified on the electrode surface. Then PER bridge sequence contained in HP2 is exposed and hybridized with PER concatemers, following multiple short single-stranded DNA tagged with methylene blue (ssDNA-MB) bond with the PER concatemers. Under optimized conditions, PER-E-CRISPR assay for detecting miR-21 exhibits linearity in dynamic range from 10−13 to 10−7 M, and we obtained a limit of detection (LOD) of 30.2 fM. The established PER-E-CRISPR biosensor shows perfect practical performance in actual plasma, which may have great promising prospects for miRNA detection in the field of molecular diagnosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call