Abstract

Antibiotics have brought many benefits to public health systems worldwide since their first use in the last century, yet with their overuse in clinical treatment and livestock farming, new public health issues have arisen. Previously, we found in our experiments that the levels of macB genes in bovine raw milk ranked among the top of many drug resistance genes. In this paper, we present an analysis of regularly interspaced clustered short palindromic repeats (CRISPR) combined with surface-enhanced Raman scattering (SERS) technology for the detection of the drug resistance gene macB. The analysis was accomplished through the collaboration of the CRISPR system's ability to specifically identify genes and the more sensitive performance of the SERS. The analysis detects the drug resistance gene macB and does not yet require complex steps such as nucleic acid amplification. Thismethod may prove to be an effective method for accurate detection of the drug-resistant gene macB, thus enabling more effective prevention of contamination of drug-resistant genes in food hygiene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.