Abstract

Glaucoma affects approximately 80 million individuals worldwide, a condition for which current treatment options are inadequate. The primary risk factor for glaucoma is elevated intraocular pressure. Intraocular pressure is determined by the balance between the secretion and outflow of aqueous humor. Here we show that using the RNA interference tool CasRx based on shH10 adenovirus-associated virus can reduce the expression of the aqueous humor circulation related genes Rock1 and Rock2, as well as aquaporin 1 and β2 adrenergic receptor in female mice. This significantly reduced intraocular pressure in female mice and provided protection to the retina ganglion cells, ultimately delaying disease progression. In addition, we elucidated the mechanisms by which the knockdown of Rock1 and Rock2, or aquaporin 1 and β2 adrenergic receptor in female mice, reduces the intraocular pressure and secures the retina ganglion cells by single-cell sequencing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.