Abstract

This protocol outlines the construction of a plant transformation plasmid to express both the Cas9 nuclease and individual guide RNA (gRNA), facilitating the induction of double-stranded breaks (DSBs) in DNA and subsequent imprecise repair via the non-homologous end-joining (NHEJ) pathway. The gRNA expression cassettes are assembled from three components. First, the Medicago truncatula U6.6 (MtU6) promoter (352bp) and scaffold (83bp) sequences are amplified from a pUC-based plasmid. Additionally, a third fragment, corresponding to the target sequence, is synthesized as an oligonucleotide. The three gRNA expression fragments are then loosely assembled in a ligation-free cloning reaction and used as a template for an additional PCR step to amplify a single gRNA expression construct, ready for assembly into the transformation vector. The benefits of this design include cost efficiency, as subsequent cloning reactions only require 59 oligonucleotides and standard cloning reagents. Researchers engaged in CRISPR/Cas9-mediated genome editing in plants will find this protocol a clear and resource-efficient approach to create transformation plasmids for their experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call