Abstract

The invention of CRISPR-Cas9 technology has opened a new era in which genome manipulation has become precise, faster, cheap and more accurate than previous genome editing strategies. Despite the intricacies of the genomes associated with several protozoan parasites, CRISPR-Cas9 has made a substantial contribution to parasitology. The study of functional genomics through CRISPR-Cas9 mediated gene knockout, insertion, deletion and mutation has helped in understanding intrinsic parasite biology. The invention of CRISPR-dCas9 has helped in the programmable control of protozoan gene expression and epigenetic engineering. CRISPR and CRISPR-based alternatives will continue to thrive and may aid in the development of novel anti-protozoan strategies to tame the protozoan parasites in the imminent future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.