Abstract

In recent years, a gene-editing technology known as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 has been developed and is progressively advancing into clinical trials. While current antiviral therapies are unable to eliminate the Hepatitis B virus (HBV), it stands as a prime target for the CRISPR/Cas9 technology. The objective of this study was to enhance the efficacy of CRISPR/Cas9 in suppressing HBV replication, lowering HBsAg and HBeAg levels, and eliminating covalently closed circular DNA (cccDNA). To enhance the anti-HBV effectiveness of CRISPR/Cas9, our study delved into a dual-guide RNA (gRNA) strategy. After evaluating the antiviral activities of multiple gRNAs that effectively impeded HBV replication, we identified three specific gRNAs-namely 10, 4, and 21. These gRNAs were selected for their targeting of distinct yet conserved regions within the HBV genome. In HBV-stable cell lines, namely HepAD38, and HBV infection models of HepG2-NTCP cells, our investigation revealed that the co-application of gRNA-10 with either gRNA-4 or gRNA-21 within the CRISPR/Cas9 system demonstrated heightened efficacy in impeding HBV replication, reducing the levels of HBsAg, HBeAg, and cccDNA levels, along with a more pronounced promotion of HBsAg clearance when compared to the use of a single gRNA. The CRISPR/Cas9 system employing dual gRNAs has proven highly effective in both suppressing HBV replication and facilitating HBsAg clearance. This promising outcome suggests that it holds potential to emerge as a novel approach for achieving the functional cure of patients with HBV infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call