Abstract

Epstein-Barr virus (EBV) causes endemic Burkitt lymphoma (BL) and immunosuppression-related lymphomas. These B cell malignancies arise by distinct transformation pathways and have divergent viral and host expression programs. To identify hostdependency factors resulting from these EBV+,B cell-transformed cell states, we performed parallel genome-wide CRISPR/Cas9 loss-of-function screens in BL and lymphoblastoid cell lines (LCLs). These highlighted 57 BL and 87 LCL genes uniquely important for their growth and survival. LCL hits were enriched for EBV-induced genes, including viral super-enhancer targets. Our systematic approach uncovered key mechanisms by which EBV oncoproteins activate the PI3K/AKT pathway and evade tumor suppressor responses. LMP1-induced cFLIP was found to be critical for LCL defense against TNFα-mediated programmed cell death, whereas EBV-induced BATF/IRF4 were critical for BIM suppression and MYC induction in LCLs. Finally, EBV super-enhancer-targeted IRF2 protected LCLs against Blimp1-mediated tumor suppression. Our results identify viral transformation-driven synthetic lethal targets for therapeutic intervention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.