Abstract

Sorghum (Sorghum bicolor L. Moench) is one of the world's most cultivated cereal crops. Biotechnology approaches have great potential to complement traditional crop improvement. Earlier studies in rice and maize revealed that LIGULELESS-1 (LG1) is responsible for formation of the ligule and auricle, which determine the leaf inclination angle. However, generation and analysis of lg1 mutants in sorghum has so far not been described. Here, we describe CRISPR/Cas9 mediated targeted mutagenesis of LG1 in sorghum and phenotypic changes in mono- and bi-allelic lg1 mutants. Genome editing reagents were co-delivered to sorghum (var. Tx430) with the nptII selectable marker via particle bombardment of immature embryos followed by regeneration of transgenic plants. Sanger sequencing confirmed a single nucleotide insertion in the sgRNA LG1 target site. Monoallelic edited plantlets displayed more upright leaves in tissue culture and after transfer to soil when compared to wild type. T1 progeny plants with biallelic lg1 mutation lacked ligules entirely and displayed a more severe reduction in leaf inclination angle than monoallelic mutants. Transgene-free lg1 mutants devoid of the genome editing vector were also recovered in the segregating T1 generation. Targeted mutagenesis of LG1 provides a rapidly scorable phenotype in tissue culture and will facilitate optimization of genome editing protocols. Altering leaf inclination angle also has the potential to elevate yield in high-density plantings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call