Abstract
CRISPR/Cas9 technology has become the most efficient method for genome editing in many plant species, including important industrial crops such as potatoes. This study used three target regions (T1, T2, and T3) in gbss exon I, whose sequences were first inserted into the BbsI sites in the appropriate guide RNA (gRNA) vector (pEn-Chimera, pMR203, pMR204, and pMR205), and then localized between the AtU6 promoter and the gRNA scaffold sequence. Expression vectors were constructed by introducing gRNA genes into the pMR287 (pYUCas9Plus) plasmids using the MultiSite Gateway system by attR and attL sites. The three target regions of mutant potato lines were analyzed. The use of CRISPR/Cas9-mediated multiple guide RNA-targeted mutagenesis allowed tri- or tetra-allelic mutant potato lines to be generated. Multiple nucleotide substitutions and indels within and around the three target sites caused a frameshift mutation that led to a premature stop codon, resulting in the production of gbss-knockout plants. Mutation frequencies and analysis of mutation patterns suggested that the stably transformed Cas9/multiple guide RNA expression constructs used in this study can induce targeted mutations efficiently in the potato genome. Full knockout of the gbss gene was analyzed by CAPS, Sanger sequencing and iodine staining. The present study demonstrated successful CRISPR/Cas9-mediated multiple guide RNA-targeted mutagenesis in the potato gbss gene by Agrobacterium-mediated transformation, resulting in an amylose-free phenotype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.