Abstract

Oncogenic fusion genes are attractive therapeutic targets because of their tumor-specific expression and central "driver" roles in various human cancers. However, oncogenic fusions involving transcription factors such as PAX3-FOXO1 in alveolar fusion gene-positive rhabdomyosarcoma (FP-RMS) have been difficult to inhibit due to the apparent lack of tractable drug-like binding sites comparable to that recognized by Gleevec (imatinib mesylate) on the BCR-ABL1 tyrosine kinase fusion protein. Toward the identification of novel small molecules that selectively target PAX3-FOXO1, we used CRISPR-Cas9-mediated knock-in to append the pro-luminescent HiBiT tag onto the carboxy terminus of the endogenous PAX3-FOXO1 fusion protein in two human FP-RMS cell lines (RH4 and SCMC). HiBiT is an 11-amino acid peptide derived from the NanoLuc luciferase that produces a luminescence signal which is ~100-fold brighter than firefly or Renilla luciferases through high-affinity binding to a complementary NanoLuc peptide fragment called LgBiT. To facilitate single-cell clonal isolation of knock-ins, the homology-directed repair template encoding HiBiT was followed by a P2A self-cleaving peptide for coexpression of an mCherry fluorescent protein as a fluorescence-activated cell sorter (FACS)-selectable marker. HiBiT tagging thus allows highly sensitive luminescence detection of endogenous PAX3-FOXO1 levels permitting quantitative high-throughput screening of large compound libraries for the discovery of PAX3-FOXO1 inhibitors and degraders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.