Abstract

To produce in vitro models of human chondrodysplasias caused by dominant missense mutations in TRPV4, we used CRISPR/Cas9 gene editing to introduce two heterozygous patient mutations (p.F273L and p.P799L) into an established control human iPSC line. This control line expressed a fluorescent reporter (tdTomato) at the SOX9 locus to allow real-time monitoring of cartilage differentiation by SOX9 expression. Both TRPV4 mutant iPSC lines had normal karyotypes, expressed pluripotency markers, and could differentiate into cells representative of the three embryonic germ layers. These iPSC lines, with the parental isogenic control, will be used to study TRPV4 chondrodysplasia mechanisms and explore therapeutic approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.