Abstract

IntroductionAs one of the common psychiatric diseases, depression poses serious threats to human health. Although many genes have been nominated for depression, few of them were investigated in details at the molecular level. ObjectivesTo demonstrate Frizzled class receptor 6 (FZD6) functions in depression through disrupting Wnt/β-catenin signal pathway. MethodsThe FZD6 edited cell line and mouse model were generated by using CRISPR/Cas9 technique. The expression of key genes and proteins in Wnt/β-catenin pathway was determined by qRT-PCR and Western blotting, respectively. Animal behavioral tests, including open field test (OFT), elevated plus maze test (EPM), forced swimming test (FST), tail suspension test (TST), and sucrose preference test (SPT), were employed to determine anxiety- and depressive-like behaviors. Immunofluorescent staining was used to assess cell proliferation in the hippocampus of mouse brain. ResultsAmong patients with depression, FZD6, one of the receptors of Wnt ligand, was significantly decreased. In CRISPR/Cas9-based FZD6 knockdown cells, we showed that FZD6 plays a significant role in regulating expression of genes involved in Wnt/β-catenin pathway. Subsequently behavioral studies on Fzd6 knockdown mice (with a 5-nucleotide deletion; Fzd6-Δ5) revealed significant changes in depressive symptoms, including increased immobility duration in FST, less preference of sucrose in SPT, reduction of distance traveled in OFT, and decreased time spent in open arms in EPM. Immunofluorescent staining showed decreased cell proliferation in the hippocampus of Fzd6-Δ5 mice with reduced number of Ki67+ and PCNA+ cells.Moreover, decreased Gsk3β mRNA expression, phosphorylated GSK3β, and cytoplasmic β-catenin in the hippocampus of Fzd6-Δ5 mice provided further evidence supporting the role of Fzd6 in depression. ConclusionTogether, above findings proved the significant role of FZD6 in depression through its effect on hippocampal cell proliferation and its ability to regulate canonical Wnt/β-catenin pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call