Abstract

CRISPR-Cas9 has been adapted as a readily programmable genome manipulation agent, and continuing technological advances rely on an in-depth mechanistic understanding of Cas9 target discrimination. Cas9 interrogates a target by unwinding the DNA duplex to form an R-loop, where the RNA guide hybridizes with one of the DNA strands. It has been shown that RNA guides shorter than the normal length of 20-nucleotide (-nt) support Cas9 cleavage activity by enabling partial unwinding beyond the RNA/DNA hybrid. To investigate whether DNA segment beyond the RNA/DNA hybrid can impact Cas9 target discrimination with truncated guides, Cas9 double-stranded DNA cleavage rates (kcat) were measured with 16-nt guides on targets with varying sequences at +17 to +20 positions distal to the protospacer-adjacent-motif (PAM). The data reveal a log-linear inverse correlation between kcat and the PAM+(17-20) DNA duplex dissociation free energy (ΔGNN(17-20)0), with sequences having smaller ΔGNN(17-20)0 showing faster cleavage and a higher degree of unwinding. The results indicate that, with a 16-nt guide, "peripheral" DNA sequences beyond the RNA/DNA hybrid contribute to target discrimination by tuning the cleavage reaction transition state through the modulation of PAM-distal unwinding. The finding provides mechanistic insights for the further development of strategies that use RNA guide truncation to enhance Cas9 specificity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call