Abstract

Background & AimsNew antiviral approaches are urgently required that target multiple aspects of the hepatitis B virus (HBV) replication cycle to improve rates of functional cure. HBV RNA represents a novel therapeutic target. Here, we programmed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas13b endonuclease, to specifically target the HBV pregenomic RNA (pgRNA) and viral mRNAs in a novel approach to reduce HBV replication and protein expression. MethodsCas13b CRISPR RNAs (crRNAs) were designed to target multiple regions of HBV pgRNA. Mammalian cells with replication competent wildtype HBV DNA of different genotypes, a HBV stable cell line, a HBV infection model and a hepatitis B surface antigen (HBsAg)-expressing stable cell line were transfected with PspCas13b-blue fluorescent protein (BFP) and crRNAs plasmids and the impact on HBV replication and protein expression was measured. WT HBV DNA, PspCas13b-BFP and crRNA plasmids were simultaneously hydrodynamically injected into mice, and sera HBsAg was measured. PspCas13b mRNA and crRNA were also delivered by lipid nanoparticles (LNP) in a HBsAg-expressing stable cell line and the impact on secreted HBsAg determined. ResultsOur HBV targeting crRNAs strongly suppressed HBV replication and protein expression in mammalian cells by up to 96% (p<0.0001). HBV protein expression was also reduced in an HBV stable cell line and in the HBV infection model. CRISPR-Cas13b crRNAs reduced HBsAg expression by 50% (p<0.0001) in vivo. LNP-encapsulated PspCas13b mRNA reduced secreted HBsAg by 87% (p=0.0168) in a HBsAg-expressing stable cell line. ConclusionsTogether, these results show that CRISPR-Cas13b can be programmed to specifically target and degrade HBV RNAs to reduce HBV replication and protein expression, demonstrating its potential as a novel therapeutic option for chronic HBV infection. Impact and implicationsThere is an urgent need for new treatments that target multiple aspects of the HBV replication cycle. Here, we present CRISPR-Cas13b as a novel strategy to target HBV replication and protein expression paving the way for its development as a potential new treatment option for patients living with chronic hepatitis B.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call