Abstract

Nucleic acid detection of pathogens in a point-of-need (PON) manner is of great significance yet remains challenging for sensitive and accurate visual discrimination. Here, we report a CRISPR-Cas12a-mediated lateral flow assay for PON detection of Salmonella typhimurium (S.ty) that is a prevailing pathogen disseminated through tainted food. The variation of the fluorescence color of the test line is exploited to interpret the results, enabling the discrimination between positive and negative samples on the basis of a hue-recognition mechanism. By leveraging the cleavage activity of Cas12a and hue-recognition readout, the assay facilitated by recombinase polymerase amplification can yield a visual detection limit of 1 copy μL-1 for S.ty genomic DNA within 1 h. The assay also displays a high specificity toward S.ty in fresh chicken samples, as well as a sensitivity 10-fold better than that of the commercial test strip. Moreover, a semiquantitative detection of S.ty ranging from 0 to 4 × 103 CFU/mL by the naked eye is made possible, thanks to the easily discernible color change of the test line. This approach provides an easy, rapid, accurate, and user-friendly solution for the PON detection of Salmonella and other pathogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.