Abstract

The high toxicity and widespread contamination of ochratoxin A (OTA) make it urgent to develop a sensitive method to detect trace OTA in complex food matrices. Herein, an indirect competitive enzyme-linked immunosorbent assay (icELISA)-based on the CRISPR/Cas12a system is described. DNA amplicons with multiple activation sequences of the CRISPR/Cas12a system were pre-prepared to improve detection sensitivity. In the absence of OTA, streptavidin-mediated biotinylated DNA amplicons were captured by the biotinylated secondary antibody on the microplate. The captured DNA amplicons activated the CRISPR/Cas12a system, which thereby effectively cleaved the reporter DNA, producing strong fluorescence. The presence of OTA led to a decrease in DNA amplicons on the microplate, resulting in a decrease in activated Cas12a and ultimately a drop in fluorescence intensity. OTA in food matrices at nanogram per milliliter levels can be detected. Therefore, the new method has great potential in monitoring OTA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.