Abstract

Purpose . To analyze the current state of crop improvement using CRISPR/Cas technology of genome modifications. Results. The history of the development of genome editing technologies with site-specific endonucleases is presented. The current state of plant varieties creation using these technologies was analyzed. It was shown that CRISPR/Cas technology of gene editing has already been adapted for 20 species of crops, for more than 150 genes associated with important traits. The practical implementation of this technology was presented on the example of rice, for which the greatest progress in the research and use of CRISPR/Cas technology was observed: the largest number of genes has been modified – 78; more than 20 varieties were obtained. Edited rice genes associated with such traits as grain size, grain number, plant height, male sterility, cesium accumulation, tolerance to abiotic and biotic stresses, and resistance to herbicides. The possibility of multiplex editing of a potentially unlimited number of genes was underlined. The situation on the regulation of plants created by genome editing technology was discussed: according to the decision of the European Union (EU) court, all EU regulations and restrictions on the cultivation and sale of products, in particular plant varieties, obtained using genome editing techniques are applied as well as to GMOs, while according to the USDA such plants, except parasitic plants, are not regulated as GMOs. Information on the statement, approved by leading scientists representing more than 90 European research centers and institutes for the study of plants and biological sciences was provided in support of genome editing technology. Conclusions . Among the genome editing technologies, CRISPR/Cas technology is one of the most powerful approaches, which has become extensively used in plant breeding due to such advantages as high accuracy and quality, efficiency and technical flexibility, relatively low cost compared to other methods. This available method allows obtaining non-transgenic plants with specified modifications, and it is possible to simultaneously “produce” mutations in several targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call