Abstract

The CRISPR-Cas (Clustered Regularly Interspaced Short Palindrome Repeats – CRISPR associated proteins) system provides adaptive immunity in archaea and bacteria. A hallmark of CRISPR-Cas is the involvement of short crRNAs that guide associated proteins in the destruction of invading DNA or RNA. We present three fundamentally distinct processing pathways in the cyanobacterium Synechocystis sp. PCC6803 for a subtype I-D (CRISPR1), and two type III systems (CRISPR2 and CRISPR3), which are located together on the plasmid pSYSA. Using high-throughput transcriptome analyses and assays of transcript accumulation we found all CRISPR loci to be highly expressed, but the individual crRNAs had profoundly varying abundances despite single transcription start sites for each array. In a computational analysis, CRISPR3 spacers with stable secondary structures displayed a greater ratio of degradation products. These structures might interfere with the loading of the crRNAs into RNP complexes, explaining the varying abundancies. The maturation of CRISPR1 and CRISPR2 transcripts depends on at least two different Cas6 proteins. Mutation of gene sll7090, encoding a Cmr2 protein led to the disappearance of all CRISPR3-derived crRNAs, providing in vivo evidence for a function of Cmr2 in the maturation, regulation of expression, Cmr complex formation or stabilization of CRISPR3 transcripts. Finally, we optimized CRISPR repeat structure prediction and the results indicate that the spacer context can influence individual repeat structures.

Highlights

  • The RNA-based prokaryotic defense mechanism involves (i) an array of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), made up of a leader, frequently palindromic repeated sequences with unique spacers located in-between, and (ii) a defining set of CRISPR-associated (Cas) proteins

  • Three potential Cas6 endoribonuclease genes are located on pSYSA: slr7014, adjacent to CRISPR1, slr7068 and sll7075, both adjacent to CRISPR2 (Figure 1)

  • It was shown that diverse defense systems are frequently clustered in prokaryotic genomes [43], which is pronouncedly true for the pSYSA plasmid of Synechocystis 6803 as several toxin-antitoxin systems are encoded on it, together with the here described CRISPR1-3

Read more

Summary

Introduction

The RNA-based prokaryotic defense mechanism involves (i) an array of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), made up of a leader, frequently palindromic repeated sequences with unique spacers located in-between, and (ii) a defining set of CRISPR-associated (Cas) proteins At least 45 families of Cas proteins have been identified [16], and the different types of CRISPR are associated with different subsets of these Cas proteins. These modules function independently and highly with their respective crRNAs to affect CRISPR-Cas defense. The most recent classification by Makarova et al has defined three major categories of CRISPR–Cas systems, which can be further divided into at least ten subtypes and some chimeric variants [15,19]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call