Abstract

In recent, clustered regularly interspaced short palindromic repeats (CRISPR)-associated nucleases (Cas) system is emerging as a versatile genome editing tool with applications in basic science, preclinical and translational biology. This CRISPR-Cas genome editing tool is known as a precise and effective option to correct a part of the genome that may have implications in many human diseases including cancer associated genes such as oncogenes and onco-suppressors. Besides robust potential to edit target genes, CRISPR-Cas editing technology displays cellular alterations in the form of activation of DNA double strand break repair system and bringing genomic instability. As a consequence of repair of DNA double strand breaks, highly mitotically active cells may face hyper-DNA repair systems and there may be sometimes a situation leading to error prone mutations and unwanted genomic integrity. Additionally, the use of CRISPR-Cas editing technology in cancer therapy is limited in the backdrop of genotype and epigenomic heterogeneity in tumors. Therefore, a precaution should be considered to employ CRISPR-Cas technology in cancer therapy in view of tumor heterogeneity and environmental pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.