Abstract

CRISPR-based detection technologies have been widely explored for molecular diagnostics. However, the challenge lies in converting the signal of different biomolecules, such as nucleic acids, proteins, small molecules, exosomes, and ions, into a CRISPR-based nucleic acid detection signal. Understanding the detection of different biomolecules using CRISPR technology can aid in the development of practical and promising detection approaches. Unfortunately, existing reviews rarely provide an overview of CRISPR-based molecular diagnostics from the perspective of different biomolecules. Herein, we first introduce the principles and characteristics of various CRISPR nucleases for molecular diagnostics. Then, we focus on summarizing and evaluating the latest advancements in CRISPR-based detection of different biomolecules. Through a comparison of different methods of amplification and signal readout, we discuss how general detection methods can be integrated with CRISPR. Finally, we conclude by identifying opportunities for the improvement of CRISPR in quantitative, amplification-free, multiplex, all-in-one, and point-of-care testing (POCT) purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.