Abstract

Two-thirds of the 111 active volcanoes in Japan are covered with snow for several months during winter and demonstrate high hazard and risk potentials associated with snow-related lahars during and after eruptions. On 23 January 2018, a sudden phreatic eruption occurred at the ski field on Kusatsu-Shirane (Mt. Motoshirane) volcano, Japan. This new vent eruption from the snow-clad pyroclastic cone required forecasting of future snow-related lahars and crisis hazards zonation of downslope areas including Kusatsu town, a popular tourist site for skiing and hot springs. In order to achieve a prompt hazard assessment for snow-related lahars, a multidisciplinary approach was carried out involving characterization of proximal tephra deposits, snow surveys, and numerical lahar flow simulations using the Titan2D model. To determine the input parameters for the flow model, the consideration of snow water equivalent (SWE) immediately after the eruption (on 29 January) and in the post-eruptive period (on 12 March), was significant. In the case of Kusatsu-Shirane volcano during the winter of 2018, linear relationships between altitude and SWE, obtained at different elevations, were used to estimate the snow volume around the new vents. Several scenarios incorporating snow and snowmelt (water), with or without the occurrence of a new eruption, were simulated for the prediction of future lahars. Three lahar scenarios were simulated, including A) rain-on-snow triggered, B) ice/snow slurry, and C) full snowmelt triggered by a new eruption, and indicated the flow paths (inundation areas) and travel distances. These were useful for lahar hazard zonation and identification of potential high-risk areas. Since the input parameters required for the Titan2D flow model can be relatively easily determined, the model was suitable for the 2018 eruption at Motoshirane where historical and geological lahar records are not available for calibration. The procedure used in the study will enable rapid lahar prediction and hazard zonation at snow-clad volcanoes. Further consideration for simulating a cohesive-type flow, which was predicted by the primary deposits containing large amounts of clay minerals and could not be expressed in the Titan2D flow model, is necessary.

Highlights

  • Two-thirds of the 111 active volcanoes in Japan are seasonally snow-covered during winter and demonstrate high hazard and risk potentials associated with snow and snowmelt during and after an eruption (Tada and Tsuya 1927; Waythomas 2014; Kataoka et al 2018)

  • The types and triggering mechanisms for snow/ ice-related mass flows vary and include volcanic mixed avalanches triggered by pyroclastic flows sweeping across snow (Pierson and Janda 1994), and ice slurry lahars initiated by phreatic eruptions (Kilgour et al 2010), as reported worldwide

  • Constraining snow and snowmelt volumes for snow‐related lahar simulation This study considered the snow water equivalent (SWE) in near-vent areas to determine the values of input parameters for Titan2D flow simulations (Table 1)

Read more

Summary

Introduction

Two-thirds of the 111 active volcanoes in Japan are seasonally snow-covered during winter (occasionally up to 6 months) and demonstrate high hazard and risk potentials associated with snow and snowmelt during and after an eruption (Tada and Tsuya 1927; Waythomas 2014; Kataoka et al 2018). A lahar flow that occurred in April 2015 under rain-on-snow (hereafter ROS: Kattelmann 1997; Sui and Koehler 2001) conditions during snowmelt season was reportedly more water-rich and erosive, resulting in the formation of a clay-poor hyperconcentrated flow deposit (Kataoka et al 2018). Such different flow types (e.g., cohesive or non-cohesive; debris flow or hyperconcentrated flow) may exhibit different characteristic travel distances, travel times, inundation areas, and flow transformations. Because lahars at snow-clad volcanoes can have these many variations, hazard assessment and zonation of lahars should be achieved by considering several lahar scenarios for different (i.e., snow, snowmelt, and rainy) seasons

Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call