Abstract

Cripto-1 is an epidermal growth factor-Cripto/FRL1/Cryptic family member that plays a role in early embryogenesis as a coreceptor for Nodal and is overexpressed in human tumors. Here we report that in the two-stage mouse skin carcinogenesis model, Cripto-1 is highly up-regulated in tumor promoter-treated normal skin and in benign papillomas. Treatment of primary mouse keratinocytes with Cripto-1 stimulated proliferation and induced expression of keratin 8 but blocked induction of the normal epidermal differentiation marker keratin 1, changes that are hallmarks of tumor progression in squamous cancer. Chemical or genetic blockade of the transforming growth factor (TGF)-beta1 signaling pathway using the ALK5 kinase inhibitor SB431542 and dominant negative TGF-beta type II receptor, respectively, had similar effects on keratinocyte differentiation. Our results show that Cripto-1 could block TGF-beta1 receptor binding, phosphorylation of Smad2 and Smad3, TGF-beta-responsive luciferase reporter activity, and TGF-beta1-mediated senescence of keratinocytes. We suggest that inhibition of TGF-beta1 by Cripto-1 may play an important role in altering the differentiation state of keratinocytes and promoting outgrowth of squamous tumors in the mouse epidermis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.