Abstract
In early 1990s some organized criminal groups started to develop a new field of illegal business, which involved thefts of intermediary products from mining and metal-producing plants in Russia and in the south of Africa. Since local sulfide copper/nickel ores contain certain concentrations of precious and platinum group metals (PGMs), the intermediary products recovered at different stages of metallurgical transformation of these ores are materials of high commercial value. Illicit transportation and refining of these materials in Western Europe and North America has evolved into a large-scale business, where a lot of unlawful revenues are being laundered. The most important tasks in combating this organized crime are as follows: to establish the facts when some PGM-containing semi-products had been received at certain refineries; to carry out the identification of these semi-products; and to prove that these semi-products had been produced by a certain company. As a rule, it is not difficult to establish the identity of a “clean product”. However, when a material is a mix of several semi-products or a mix of some semi-product with masking substances, the identification of individual components becomes an extremely complicated task. The purpose of developing the “complex procedure for establishing the nature and source of origin of precious metal-bearing products of mining and metallurgical operations” was to make possible the identification of complex mixes comprised of various metallurgical semi-products. In the complex procedure that we have developed to characterize dispersed materials, distribution of particles by their elemental composition (the so-called “pseudophase” composition) was used instead of mineralogical composition. To determine the “pseudophase” composition by the method of scanning electron microscopy with X-ray spectral microanalysis (SEM-EDX), a representative sample of material containing not less than 1000 particles was analyzed. All microparticles can be divided into several types. Each type is characterized by an association of chemical elements contained. The first stage includes the study of elemental composition by inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass-spectrometry; and the study of phase composition by X-ray diffractometry. The results of each study are compared with data in the Data Base. In case of coincidence with one of the products with respect to all diagnostic features, the type of product and its source of origin are defined accordingly. If the features of the sample under analysis detected by the aforementioned methods do not coincide with any of the product types represented in Data Base, it is necessary to examine elemental composition and morphology of separate particle contained in the substance using SEM-EDX. If some particles characterized by features coinciding with features of particles belonging to any product or products from Data Base are found, this product or a mixture of products is assumed to be present in the composition of the substance under analysis. The assumption that the substance is a mixture can be verified by juxtaposing all previously determined features of the analyzed sample with the features of the pattern mixture (superposition) of the appropriate types of products represented in Data Base. Depending on the results of this verification the corresponding conclusion can be made.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.