Abstract
Urban safety and security play a crucial role in improving life quality of citizen and the sustainable development of urban. Traditional urban crime research focused on leveraging demographic data, which is insufficient to capture the complexity and dynamics of urban crimes. In the era of big data, we have witnessed advanced ways to collect and integrate fine-grained urban, mobile, and public service data that contains various crime-related sources as well as rich environmental and social information. The availability of big urban data provides unprecedented opportunities, which enable us to conduct advanced urban crime research. Meanwhile, environmental and social crime theories from criminology provide better understandings about the behaviors of offenders and complex patterns of crime in urban. They can not only help bridge the gap from what we have (big urban data) to what we want to understand about urban crime (urban crime analysis); but also guide us to build computational models for crime. In this article, we give an overview to key theories from criminology, summarize crime analysis on urban data, review state-of-the-art algorithms for various types of computational crime tasks and discuss some appealing research directions that can bring the urban crime research into a new frontier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.