Abstract
AbstractSocial media has dramatically influenced and changed the rate and the nature of crime in our society. The perpetrators cut across different age groups, social standing, and beliefs. The ability to be anonymous on social media and the lack of adequate resources to fight cybercrime are catalysts for the rise in criminal activities, especially in South Africa. We proposed a system that will analyse and detect crime in social media posts or messages. The new system can detect attacks and drug-related crime messages, hate speech, and offensive messages. Natural language processing algorithms were used for text tokenisation, stemming, and lemmatisation. Machine learning models such as support vector machines and random forest classifiers were used to classify texts. Using the support vector machine to detect crime in texts, we achieved 86% accuracy and using the random forest for crime analysis, 72% accuracy was achieved.KeywordsCrime detectionSocial mediaNatural language processingSupport vector machineRandom forest
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.