Abstract

Carcinogenic Cr(VI) compounds were previously found to induce amino acid/glutathione-Cr(III)-DNA crosslinks with the site of adduction on the phosphate backbone. Utilizing the pSP189 shuttle vector plasmid we found that these ternary DNA adducts were mutagenic in human fibroblasts. The Cr(III)-glutathione adduct was the most potent in this assay, followed by Cr(III)-His and Cr(III)-Cys adducts. Binary Cr(III)-DNA complexes were only weakly mutagenic, inducing a significant response only at a 10 times higher number of adducts compared with Cr(III)-glutathione. Single base substitutions at the G:C base pairs were the predominant type of mutations for all Cr(III) adducts. Cr(III), Cr(III)-Cys and Cr(III)-His adducts induced G:C-->A:T transitions and G:C-->T:A transversions with almost equal frequency, whereas the Cr(III)-glutathione mutational spectrum was dominated by G:C-->T:A transversions. Adduct-induced mutations were targeted toward G:C base pairs with either A or G in the 3' position to the mutated G, while spontaneous mutations occurred mostly at G:C base pairs with a 3' A. No correlation was found between the sites of DNA adduction and positions of base substitution, as adducts were formed randomly on DNA with no base specificity. The observed mutagenicity of Cr(III)-induced phosphotriesters demonstrates the importance of a Cr(III)-dependent pathway in Cr(VI) carcinogenicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call